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Global stability of condensation in the continuum limit for 
Frohlich's pumped phonon system 

N G Duffieldt 
Department of Physics, Queen Mary College, Mile End Road, London El  4NS, U K  

Received 15 May 1987, in final form 7 July 1987 

Abstract. For a continuum version of Frohlich's pumped phonon system we show that (i) 
there exists a critical value of the pumping above which the stationary state displays 
condensation; (ii) the stationary state is globally stable WRT perturbations; and ( i i i )  the 
relaxation times for the condendsate diverge at the onset of condensation. 

1. Introduction 

In 1968 Frohlich proposed a model of coherent excitations in biological systems [l]. 
The model comprises a finite number of polarisation waves immersed in a heat bath, 
but maintained away from equilibrium by external pumping. Frohlich described this 
by means of a non-linear kinetic equation for the occupation numbers (equation (1.1) 
below) and argued that for sufficiently strong pumping the stationary state undergoes 
Bose condensation into the mode of lowest frequency. 

In this paper we examine a continuum analogue of Frohlich's equation, i.e. we 
consider infinitely many modes. Our principal results are that (i)  there is a critical 
value of the pumping, above which the stationary distribution displays condensation 
(in the sense that it has a Dirac measure at the lowest energy); (ii) the stationary 
distribution is globally stable with respect to pertubations (so that it is the terminal 
state of the evolution for all initial conditions). This result is achieved by construction 
of a Lyapounov functional for the evolution. Finally, (iii) for the linearised evolution 
about the stationary state, relaxation times diverge as the pumping approaches its 
critical value from below. 

1.1. Frohlich's model 

We briefly review the original formulation of the model. Let there be V modes with 
frequencies w k :  O <  w ,  s w 2 s .  . . S  wv. Denote by nk the occupation number of the 
kth mode. The system heat-bath interaction is assumed to lead to spontaneous emission 
and absorbtion of phonons (with transition probabilities &) and two-phonon exchanges 
(with probability X , k /  V ) .  Detailed balance at heat-bath temperature T is assumed for 
these processes. Energy is pumped into the kth mode at a rate s k .  In units for which 
h = kBT these assumptions give rise to the following kinetic equation for the n k :  

V 

dnk/d f = Sk - t k [  n k  ewh - ( 1 + n k ) ]  - 1 x , k [  n k  ( 1 + n, ) ewk - n, ( 1 + n k )  ewj]. (1.1) 
J = l  
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626 N G Dufield 

Assuming the transition probabilities to be uniform (i.e. s k  = s, tk = 6 and X j k  = x ) ,  
Frohlich found a self-consistent expression for the stationary distribution of (1 . l )  
which we denote by mk: 

where p is the 'effective chemical potential', determined from (1.1) by the requirement 
that x k  h k  = 0: 

(1.3) 

(That such a unique value of p exists follows from the fact that for all k the function 
p -mk  defined by (1.2) is increasing.) Define the density p = V-I X k  mk. From (1.3) 
we have that K l p  i 6 + s C K2p for some 0 < K1 < K 2  < a, so that p must increase 
indefinitely with s. From (1.2), this is only possible if p approaches w1 from below. 

This is the essence of Frohlich's model. Loosely speaking, as the pumping s 
increases, most of the supplied energy is channelled into the lowest energy mode, while 
all other modes become saturated. This behaviour is a true non-equilibrium effect (if 
s = 0, the stationary distribution is Planckian), which depends on the collective 
behaviour of the phonon modes (if x = 0 all the modes are occupied to roughly the 
same degree). 

1.2. The continuum model 

The experience from equilibrium statistical mechanics is that phase transitions become 
clear-cut only at infinite volume [2]. Thus we seek to generalise (1.1) to treat a continuum 
of mode frequencies. Specifically, let X be a closed and  bounded interval of the 
positive real line. X is the set of frequencies of the continuum of modes. The sum 
over finitely many modes in (1.1) is replaced by integation against a measure v(dx).  
d v l d x  is to be understood as a density of states. (We will relate v to the dispersion 
relation for a class of Debye type models.) 

We propose the following analogue of (1.1). The vector of occupation numbers 
n k ( t )  goes over to a one-parameter family of measures { q ~ , } , ~ ~  on X .  Let f be an  
arbitrary continuous function on X .  Then we have 

c 

where s (x ) ,  [ ( X I  and x ( x , y )  are the continuum analogues of the discrete coupling 
functions. Thus differentiability of cp, is understood in the weak-* sense. 

Remark. Elsewhere [3], we show how (1.4) can be derived from a family of quantum 
dynamical semigroups [4] (one for each volume V )  associated with (1.1). The corre- 
sponding hierarchy of reduced density matrices has the property that it decorrelates 
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in the thermodynamic limit: each order of the hierarchy can be written as a product 
of solutions of (1.4). 

1.3. Condensation 

Henceforth we will confine our attention to a subset of all possible values of the 
coupling functions s, 6 and ,y (see (2.2)). In 9 2 we will see that for appropriate 
measures v the mean pumping s has a critical value s, above which the stationary 
solution of (1.4) has a Dirac measure at the lowest energy in X .  Thus we can 
speak of generalised non-equilibrium Bose condensation, and the condensate density 
(=max{O, ( s  - s,)}) acts as an order parameter for the order-disorder transition. The 
most important property of the infinite volume model is that a finite fraction of the 
total density is found at the lowest energy whenever s > s,. In the finite models we 
can only say that since n, can be made as large as desired. 

Now, condensation as applied to Bose gases is usually understood from equilibrium 
statistical mechanics. For example, one constructs the grand canonical ensemble for 
the free gas confined to an increasing family of boxes and demonstrates the existence 
of a critical density [5]. However, the free Bose gas has also been treated dynamically: 
in [6] a non-linear kinetic equation for the gas coupled to a heat bath is found. The 
stationary state has a Dirac measure at zero energy. Thus condensation is not a solely 
equilibrium notion. 

1.4. Dynamics and global stability 

In 5 3 we examine the dynamics generated by (1.4) in the space of measures on X and 
settle some technical questions concerning the existence of a bona fide solution. In 
§ 4 we proceed to the main result of the paper, namely that the stationary state is 
globally stable with respect to perturbations. This is achieved by construction of a 
Lyapounov function for the evolution, i.e. a continuous function bounded below which 
decreases along trajectories. The main task here is to find a suitable monotonic function. 
To prove continuity, we adapt some results from [6-91. 

We mention here two previous pieces of work on stability. Firstly, in [lo], local 
stability of Frohlich’s original equation (1.1) was investigated via a series expansion 
in s-’. To leading order only the eigenvalues of the linearised evolution about the 
stationary state were found to be negative. Subsequently, in [ 111, the present author 
proved global stability for a restricted class of equations of the form (1.1) by construction 
of a Lyapounov function. The present paper may be seen as an extension of the results 
in [ l l ]  to the measure theoretic case. 

1.5. Linearised evolution 

Finally, in § 5, we investigate the spectrum of the linearised evolution about the 
stationary state. Our result is that relaxation times diverge as s approaches s, from 
below. This is to be expected in the light of Haken’s general framework for order 
parameters far from equilibrium [ 121. The divergence of relaxation times corresponds 
to the fact that the disordered phase (i.e. that with zero stationary condensate density) 
becomes unstable as we approach the phase transition. This behaviour does not appear 
to be accessible from existing calculations on finite-volume models. 
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2. The stationary distribution: condensation 

2.1. The models 

We consider a class of Debye models with dispersion. We work in d dimensions. Let 
K = [0, E]: E <  cc contain the norms of the momenta of all modes under consideration. 
Let X = [x, 21: 0 < x < 2 < ~3 contain all the energies. Then we assume a function 
w : K + X (the dispersion relation) with the following properties: 

(a) w ( K ) = X ;  
(b)  w is strictly monotonic increasing; 
(c) in some open interval N of K containing 0, then w ( k ) = w ( O ) + k " q ( k )  with 

K > 1 and q continuously differentiable on N with ~ ( 0 )  > 0. 
Note that (a) and (b) together imply that w ( 0 )  = & and @ ( E )  = X. We are now able 

to define the measure v on X ,  against which integration replaces the sum of the finite 
model: let f E C ( X ) .  Then define the linear functional v on C ( X )  by 

d 
v(f) =Ed loi d k  kd- '(fo w)(k).  (2.1) 

Note that v is normalised so that v(1) = 1 (define l ( x )  = 1 on X ) .  Clearly v is positive 
and hence continuous, so by the Riesz representation theorem [13] it defines a Bake 
measure (with a unique regular Bore1 extension which we also denote by v )  on the 
compact set X .  

2.2. Existence of condensation 

Hereafter we restrict ourselves to the following choice of coupling functions s, 6 
and x: 

x ( x , y ) =  y e x p [ - ( x + y ) ]  ( ( x ) = ( e " - l ) - '  s ( x ) = s - ( ( x )  (2.2) 

where y > 0 and s > (e" - l ) - ' .  y and s are now the parameters of the theory. For 
clarity we write out (1.4) with the parameters (2.2): 

where e ( x )  is the function exp(-x) on X .  Then we have the following form for the 
stationary measure of (2.3). 

Proposition 1 .  Let p E (-m, &I, and let mw denote the function 
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on X .  Then for dimension d > K ,  the critical pumping s, = v(m,) is finite and the 
stationary measure for (2.3) at pumping s is 

cp"( ) = ( s - s c ) + 6 , (  )+v(m,* )  ( 2 . 5 )  

where (p)' = ;( p + / P I ) ,  6, is the Dirac measure at x and p is the unique solution of 

( 2 . 6 )  

Proof: First we consider the finiteness of s,. For all p E (-CO, 53, m, is bounded and 
continuous on [x + E, 21 for any E > 0, and hence integrable against Y there. So to 
demonstrate that s, is finite, we need only show that m,(x) is integrable in some 
neighbourhood of X containing x. By assumption (c) above, we can take the Taylor 
expansion of w in the neighbourhood N :  

( 2 . 7 )  

for k E N and some L E  [0, k ] .  Now pick some non-zero A in N. Then for all k E [0, A ]  

o s w ( k ) - w ( O ) s  CAk" (2 .8a )  

s - ( s  - s,)+ = Y( m, ). 

w (  k )  - w ( 0 )  = k" ( ~ ( 0 )  + k ~ ' (  i ) )  

where 

CA = 7(0)+A max 0, sup ~ ' ( k )  { k ~ [ O , A I  

Combining (2.8) and (2.1) we see that 

( 2 . 8 b )  

( 2 . 9 )  

The RHS of ( 2 . 9 )  is integrable whenever d > K .  A similar estimate shows that the 
converse is true: the LHS is never integrable when d 

Next consider the form of the stationary measure. For d > K ,  the statement that 
(2 .6)  has a unique solution p for s<s, follows from the fact that m,(x) is a strictly 
increasing function of p, continuous uniformly for x: hence the function p H v( m@) 
is also continuous and strictly increasing. 

K .  

All that remains is to verify the form ( 2 . 5 ) .  We rewrite ( 2 . 3 )  as 

( Ocps)(f) = ~ ( c p '  0 ( c p '  + U))(( 10 ef) - ( f0 e)) + s 4 f )  - cp ' ( f )  (2.10) 

(2.1 1 )  

for all f in C ( X ) .  Inverting (2.4) we find that 

r 4 x )  = ( 1  + y e b ) ) M , ( x )  - 1 

(Qcp')(f)= ( 1 + Y e ( C L ) ) [ c p ' ( l ) ( c p ' + Y ) ( M ~ ) - ( c p ' +  . ) ( M , ) c p ~ ( f ) I + ( s - c p ' ( l ) ) v ( f ) .  

with M , ( x )  = m , ( x ) / (  1 + m,(x)) 

and so 

(2.12) 

Now by ( 2 . 5 )  we see that 

( c p  ' + v)( M ,  * ) = (s - ~ , ) + 8 , (  M,, . ) + v(m; 

and so 

( 2 . 1 3 )  

(2.14) 



6 3 0  N G Du$eld 

Equations ( 2 . 5 )  and ( 2 . 6 )  together imply that cp“( 1) = s. By multiplying out (2.14) one 
finds that the only possible non-zero term in (Qcp’)(f) is 

( 1  + y e ( p ) ) ( s - s , ) ’ . ( l -  M,(x))(v(m,f)- v ( m p ) f ( x ) ) .  ( 2 . 1 5 )  

But, since when s is finite 

( s  - s,)+ 3 O e p  = x e l i m  M , ( x )  = 1 
x + x 

we have that (s - s,)+( 1 - M,(x)) = 0 for all s, and hence that (Qcps)(f) = 0. 

( 2 . 1 6 )  

Remarks .  (1) cp( 1) = s: the pumping fixes the stationary density. ( 2 )  If y = 0 then the 
stationary measure is c p ’ ( f )  = sv(f) for all s, so condensation will never occur. 

3. Dynamics 

We look for time-dependent solutions of ( 2 . 3 ) .  Bearing in mind the form of the 
stationary measure ( 2 . 5 ) ,  we will restrict our attention to measures of the form 

cp,( * 1 = v(n,* 1 + c+,fi,(. 1 ’ ( 3 . 1 )  

where n,  E L i ( X ,  dv)’ and  (T, E R + ,  so that the time-dependent measure is the sum of 
a condensate term, and  a measure absolutely continuous with respect to v. 

We consider the Banach space 93 = L ’ ( X ,  d v ) O R  with norm / l n O ( ~ / /  = / ~ n ~ ~ L ~ + ~ u ~ .  
Inserting ( 3 . 1 )  into ( 2 . 3 )  yields the system 

4 ( x )  = s - n t ( x ) +  r u , [ ( e ( x )  - e ( r c ) ) n , ( x ) +  4 x ) l  

+ y 5, v ( d y ) [ n , ( y ) ( l  + n , ( x ) ) e ( x )  - n , ( x ) ( l +  n , ( y ) ) e ( y ) l  ( 3 . 2 ~ )  

( 3 . 2 6 )  

Lemma 2. For each initial condition noOa0 in 93, ( 3 . 2 )  generates a local solution 
{ ~ , O ( T , } ~ ~ , ~ ~  where 7 depends only on ~ ~ n o O ~ o ~ ~ .  

ProoJ: This follows from the fact that in any norm ball B of 93 the derivative ( 3 . 2 )  is 
bounded and  uniformly continuous WRT the 11 * I /  topology on 93. The integral equation 
associated with ( 3 . 2 )  yields a contraction mapping in %([O, 71; B) for sufficiently small 
T in the usual manner. The unique fixed point of this map is the local solution [14]. 

We note that for this local solution, the density p, = (T, + j x  v ( d x ) n , ( x )  obeys the closed 
equation 

P I  = s - P I  ( 3 . 3 )  

and hence relaxes to its stationary value s. In particular, we have the bound p , s  
max{s,po). 

The local value of U, has the following property. 
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Lemma 3. 

U0 = o-u, = 0 

uo> O*u, > 0 
t E [O,  T I  

t E [O, 71. 

ProoJ From (3.2) 

d 
-u:=-2u: v (dx){ l+y[ (e (x  
d t  

so since Iln,Ou,\I is bounded in [0, r] 

- e(x 

(3.4a) 

(3.4b) 

for some positive K ,  and K 2 .  Hence, by Gronwall's lemma [ 141 

U: exp( - K 2 t )  G U: s U: exp( K ,  t )  

whence (3.4). 

Lemma 4. The local solution preserves the positivity of initial conditions. 

Proof: We split up  the derivative (3.2a) into a linear and a non-linear part: ri, = Ln, + Nn, 
where 

r 

(3.8a) 

(Nn,)(x)  = s +  yc(a - P , ) n , ( x ) + y a , [ ( c + e ( x ) - e ( x ) ) n , ( x ) + e ( x ) l  

+ Y jx v(dy)n,(x)n,(y)(c+ e(x) - 4 ~ ) )  (3.86) 

where a = 2 max{po, s} and c is any real number such that c + e(x) - e(y) > 0 for all 
x, y E X, and p, is the solution of (3.3) with initial density po.  Thus {nf}fGLo,Tl is the 
solution of the integral equation 

n, =(@n), :=exp(Lr)n,+ drexp[L(t-r)]Nn, .  (3.9) lof 
The point now is that exp(Lt) and N both preserve order in L1(X, dv) .  (This is obvious 
for N; we give an explicit form for exp( Lt) in (3.14) below.) Thus the iteration sequence 

n?(x) = o n:+' i e N  (3.10) 

is for each f E [0, r] an increasing sequence in L'(X, dv)'. If this sequence is norm 
bounded (uniformly in [0, TI) then the monotone convergence theorem implies the 
existence of a limit. Furthermore, since 0 is continuous, this limit will be the local 
solution previously constructed in lemma 2. But this is easy to arrange. Define 

P',":= I E sup [ 0, T I  ( U, + jx v(dx)n:(x)). (3.11) 

Then a simple estimate of (3.8) and (3.9) yields 

1 - exp[ - ( 1 + yac)r] 
1 + yac 

P ( : + " S  po+ (U + UP':'+ w (  Pj")2)  (3.12) 
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where U, U and w are positive constants. Thus we can always choose T small enough 
that 

pj"< ajp(i+l) ~ < a. (3.13) 

Since the n: are positive, a serves as a bound for 11n111 as required. 

Proposition 5. There exists a global positive solution to (2.3) for positive initial 
conditions. 

Proof: The constants a and c can be chosen globally for a given initial condition, and 
so we can construct a global solution by joining together local positive solutions 
constructed on the intervals [0, T], [T, 271, etc, via lemmas 2,3 and 4. 

Now we give the explicit form of exp( Lt): 

(exp(Lt)n)(x)=exp[ - ( l+yac ) t ]  

v ( n )  
.(e) 

n(x) exp(-ytv(e))+- e(x)[l  -exp(-ytv(e))] (3.14) 

This is easily verified by differentiation. exp(Lt) is positive and linear, hence order 
preserving. We will need this explicit form in the next section. 

4. Global stability 

In this section we prove that the stationary solution (2.5) is the terminal state for every 
initial condition of the form (3.1). 

4.1. Lyapounov function : monotonicity 

First, we recall from (3.3) that p ,  relaxes to its stationary value s. Thus B+ divides 
into three regions invariant under the evolution 

( 4 . 1 ~ )  

(4 . lb )  

( 4 . 1 ~ )  

Note that B+= K + u  K o u  K-. In what follows we work at given pumping s with 
associated chemical potential p. We now define on the whole of B+ the functional 

K +  = {n 0 u E B+: p L s }  

KO= {n O u e  B+: p = s} 

K- = { n O u e  B+: p s s}. 

where F : R+ x R+ + R+ is given by 

We shall see that Ao is a Lyapounov functional for the restriction of the evolution to 
the invariant set KO. We shall have to build separate extensions A+ and A- for the 
evolution on K +  and K-. 
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Proposition 6. The Lyapounou functional on KO. Let 6 = (s - s,)+, i.e. the stationary 
condensate density. Then we have the following. 

(a) For all n @ a E B + = J K o  

A'( n 0 a )  2 A'( m, 0 6 )  = 0 (4.4) 

with equality iff n 0 a = m, 0 6, 
(b) For any initial condition noOao in KO 

A'( n, 0 a,) - A'( nb 0 ab) = - d7  ro( n,O a,) Sd 
for any S E (0, t ] ,  the functional r0 defined as 

(4.5) 

where 

Proof of ( a ) .  This follows from the observations that 
(i) F( p ;  q )  is convex in p,  and for a given q takes its minimum value, zero, at p = q ;  
(ii) F ( p ;  q ) s p / q  so that the integrand in (4.3) is integrable whenever n is; and 
(iii) -a log M , ( x )  5 0 and 6 log M , ( x )  = 0 since 6 2 O e p  = M , ( & )  = 1 .  

Proof of ( b ) .  First, we must show that A'( n , O  a,) is differentiable. This is problematic 
since F (  p ;  q )  is not differentiable WRT p at p = 0. However, we can circumvent this 
case by means of the following lemma, which can be used to show that the derivative 
of Ao exists after an arbitrarily short length of time. 

Lemma 7. For all initial conditions n,Oa,, and all S > 0, n , ( x )  is almost everywhere 
[ v ]  bounded away from zero uniformly for all t 2 S. 

Proof: Recall that the iteration sequence (3.10) increases monotonically to its limit, 
so that 

n , ( x )  3 n : ( x )  = (exp(Lt)no)(x) 

But ny = 0 for all x, so that 

N (  n : ) ( x )  = s + y a , e ( x ) .  (4.9) 
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Using the explicit form (3.14) for exp(Lt) and retaining only the first term, 

( exp(L t ) l ) (x )  3 exp(-bt) b = 1 + y (  ac + v( e ) ) .  (4.10) 

Combining (4.8)-(4.10) and performing the integration over r 

n , ( x ) z s [ l  -exp(-bt)]/b almost everywhere [ v ]  (4.1 1 )  

and hence the almost everywhere lower bound on {n,(x)},=, is k, = s(1 -exp(-b6))/b. 

Remark. It follows from (4.11) that 

log M, (P)S log  R , ( x ) <  l /k ,+ log  M , ( x )  t 2 6. (4.12) 

Proof of ( b )  (continued). Differentiability of the condensate term in (4.2) is trivial. 
Now, F(  p ;  q )  is convex in p and dF(  p ,  q ) / d p  = log[p( 1 + q) /q( l  +p)], so that for 
r 3 6 > 0  and h>O 

(4.13) 

If we divide through by h, then pointwise, both sides of the inequality converge to 
ri,( x) log R, ( x )  as h + 0. Since n, is L' differentiable and  log R, ( x )  is almost everywhere 
bounded (equation (4.12)), we can use the dominated convergence theorem to achieve 
the same convergence under integration over X WRT v. The same result holds with h 
negative, and  so 

d d 
v (dx)F(n , (x ) ;  m , ( x ) )  = - v(dX) log R,(x) - n,(x). (4.14) 

d t  

(4.15) 

so that 

(4.16) 
Since p, = s on KO, the first term in (4.16) vanishes, and  the bounds of lemma 7 justify 
an  exchange of integrals in the last term, yielding (4.6). Finally the integral form (4.5) 
follows because, since n, and (+, are C'  functions of t and R, (x)  is bounded, T(n,Oa,)  
is a continuous function of t .  
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Proof of (e).  By inspection of (4.6), ro is positive. 

We cannot directly extend proposition 6 to cover the whole of 9' since the first term 
in (4.16) is of indefinite sign when p # s. However, from the following lemma we can 
infer that it converges to zero. 

Lemma 8. Let Z(n,)  = -Ix v(dx) log N,(x). Then for all t > 0, Z(n,) is differentiable 
WRT time, and 

a ( n , ) s ( a + b p , ) - ( s + c p , ) E ( n , )  (4.17) 

where a = 1 + s, b = y e ( x )  and c = y e ( 2 )  and hence Z( n,) is unformly bounded for all 
t 3 6 > 0 .  

ProoJ The function p H log[( 1 + p ) / p ]  is convex, so by lemma 7, and using an argument 
similar to that in proposition 6 ,  the derivative 

exists for all t > O .  Using the form ( 3 . 2 ~ )  for ri,(x): 

and so since j x  v(dx) = 1, 

( 4 . 1 8 ~ )  

(4.18 b )  

Applying the inequality (1  + n,(x))-' s 1 to the first term of (4.18b) and the logarithmic 
inequality - l /n , (x)  S log N,(x) to the second yields (4.17). Since p,  is uniformly 
bounded and E(n,)  is positive, it is a simple matter to use Gronwall's lemma to show 
that 

(4.19) 5( n,) s E( ns) exp[ - B( t - 6 ) ]  + C{ 1 - exp[ -B(  t - a)]} 
for t 3 6 > 0, B, C finite positive constants depending on the initial condition. 

Proposition 6A. The Lyapounov functional on K + .  Define on K f  the functional 

A * ( n O a )  = A O ( n O a ) + a ( p  --s)+4b(p2-s2)+(p -s)Z(n).  (4.20) 

(a) for all nOa E K + ,  A'(n @ a )  S A'( m, 0 6) = 0 with equality iff nOa = m, 0 6;  
(b) for any initial condition in K' 

Then 

A+( n,Ou,)  -A'( naO as) = - 
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for any S E (0, t ] ,  the functional r+ defined as 

r"( n , O a , )  = ro( n , O u , )  + ( p ,  - s) ( a  + b p , )  -$( n , )  - v(dx) log M,(x) 

Proofof ( a ) .  This follows from the positivity of AO(proposition 6), of Z and of p -s. 

Proofof (6). By proposition 6 and lemma 7, A+ is differentiable for all t > 0. Differen- 
tiating (4.20) and applying (3.3) and (4.16) (including the first term of the latter) the 
stated form results. 

Proof of ( e ) .  Substituting (4.17) into (4.21): 

r+(n ,Oa , )~rO(n ,Oa , )+(p , - s )  

Finally, we construct the Lyapounov functional A- on K -  in the following proposition 
whose proof, being similar to proposition 6A, we omit. 

Proposition 6B. The Lyapounov functional on K - .  Define on K -  the functional 

A-( n O  a )  = A'( n O a )  + ( p  - s) v(dx) log M,(x). (4.22) I, 

6 
Then 

(a) for all nO a E K - ,  A-( n O  a )  3 A-( m, O 8) = 0 with equality iff n O a  = m, 0 8; 
(b)  for any initial condition in K -  

A-( n, O a,) - A-( n, O a,) = - d.r r-( n,O a,) 

for any S E (0, t],  the functional r- defined as 

r-(n, 0 a,) = r o ( n ,  a,) + (s - p , ) E ( n , )  (4.23) 

(c) r + ( n , O a , ) > ~ .  

4.2. Lyapounov functional: continuity 

We now want to relate the monotonicity of A', A+ and A- on KO, K' and K -  to the 
convergence of n, 0 U, towards m, O 6. In this we will make considerable use of results 
obtained in [6] for a dynamical model of the free Bose gas with energy cutoff. The 
main point is that on KO (i.e. when p = s) a little manipulation shows that dn,(x)/dt  
in (4.15) has the same relation to the Lyapounov functional (4.2) as does the generator 
(96) to the Lyapounov functional (95) in [ 6 ] .  This correspondence allows us to conclude 
immediately that m,@& is the terminal state for initial conditions in KO. In view of 
the fact that p, + s, the extension of this result to initial conditions throughout 93+ is 
not surprising. We will state the main result, then proceed via a number of lemmas. 

First of all define 

D : =  (0, R -51 c R +  

x, := [g+ S, X ] C  x VSE D 
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and the functional A on Bt by 
nOaE K +  
nOue KO 
nOue K -  A-(  n O u) 

Theorem 9. (a) If s 3 s, then t16 E D 

lx6 v(dx)ln,(x) - m,(x)l= 0. 

(b) If s < s ,  then (a) holds with X replacing X s .  

Lemma 10. 

lim 1 v(dx)( m,(x) - n, (x))  = 0. 
x t X : n , ( r ) = m , ( x )  

Proof: Let 

v(dx)(m,(x) - n,(x))  I I , (  E ,  S) := 
x t Xd : n, I x )= m, ( x j (  1 - E  ) 

so that the integral in (4.24) is just Z,(O, 0). Note that 
I , (  E ,  6 )  + f:')( E ,  6 )  + f : 2 ) (  6 )  where 

v(dx)(m,(x) - n,(x)) 
X6 : m, ( x  )( I - E  )< n,(x 1s m, ( x )  

0s J ~ ' ) ( E ,  6 ) s  E J u(dx)m,(x) 

O s  f :2j (6)s  lo8 v ( d x ) m , ( x )  

X 

so a glance at (2.9) tells us that 

uniformly in 

lim lim f:')( E ,  6)  = lim f i 2 j (  6)  = o 

t .  So it is sufficient to prove that 

6 - t O  E - 0  8-0 

lim I , ( & ,  6)  = O  V E ,  6. 
r-m 

(4.24) 

(4.25) 

I t (% 0 )  = 

( 4 . 2 6 ~ )  

(4.26b) 

( 4 . 2 7 ~ )  

(4.27 b) 

(4.28) 

(4.29) 

Making an  estimate very similar to that in [6, lemma 31, we find that 3C,,, > 0 such that 

(4.30) 

Furthermore, it can be shown by applying Gronwall's lemma to (3.2b) that if I , (&,  6 )  = 
d > 0, then 36, > 0 such that 

I,(&, 6)  5 f d  v T E [ t ,  t+6,] .  (4.31) 

rO(nfOa,)a C E , 8 ( L ( E ,  6 ) + ( P ,  - S ) ) I f ( E ,  6 ) .  
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Now, if (4.29) is not satisfied, then V E ~  > 0, 3d > 0 and a divergent sequence of times 
{tk} such that 

If, ( E ,  6 1 > d. 

Choose the { tk} such that 
tions 6,6A and 6B and because r' 5 ro5 0, 

tk > 6 , ,  and t l  such that lpfl - S I  S 4d. Then by proposi- 

But A( n, @ a,) is bounded below by zero, which contradicts (4.32). 

Lemma 11. For all 6 E D define 

v(dx)(n,(x)- m,(x)) I J ,  (6)  := 
x E X x :  n,  ( x  1 m, ( x )  

Then V ~ , E ~  and t o >  0, 3 ~ >  to such that J,  < E , .  

Proo$ It is enough to prove that V6, E ,  E ~ ,  lo > 0, 37 > to such that 

v(dx)(n,(x)-m,(x))< 81. (4.33) J x t  Xx : n,( x )a m, ( x 1 + E  ) 

J,( E ,  6)  := 

If a. > 0 then by lemma 3 a, > 0 V t  > 0. Moreover, lemma 10 tells us that V E ~  > 03 t l  > to 
such that V t  > t , ,  Z,(O, 0) < e 2 .  Now suppose (4.33) is false. Then there would exist 
E ,  6, d > 0 such that J , (E ,  6 )  > d Vt > 0. Choosing e2 small enough, one obtains from 
( 3 . 2 ~ )  that 

d 
V t  > t l :  - a, 3 ka, 

d t  
with k > 0 

and hence that l imf+r U, = 00: a contradiction. If a. = 0, one can use a similar argument 
by considering I:' v(dx)n,(x)  for sufficiently small 6,  [6]. 

The previous two lemmas are concerned with the particulars of the evolution. The 
following two lemmas concentrate on the continuity of the Lyapounov functional. 

Lemma 12. Let { n ' @ u ' } l E N  be a sequence in 93+. Then either of the following 
conditions imply that A'( n'@ a ' )  + A'( m, @ 6): 

(a)  if s 2 s, then V6 E D :  

Iim J v(dx)ln'(x)- m,(x)l= O 
xx I-= 

(4.34) 

(b)  if s < s, then (4.34) holds with 6 = 0. 
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Proof: Follows immediately from [6, lemma 41. 

Corollary 12A. In lemma 12, let n ' O a '  = n,,Oa,:  the evolutes of some noOvo for a 
divergent sequence of times { t , } .  If the conditions (a)  or (b) apply, then 

(4.35) 

(4.36) 

A(n,,  0 a,,) -, Nm,O 6) 
and hence 

A(n,O U , )  + A( m, 0 6). 

Proof: Examination of (4.20) and (4.22) shows that 

A * ( n , O  U , )  = A'( n, 0 + Ip, - s /  G:(noO g o )  (4.37) 

where for each initial condition no@(+,,, G : ( ~ , O U ~ )  is positive and for each 6 > O  
uniformly bounded for t > 6. Since p, + s, (4.35) follows. Finally, since A ( n , O a , )  is 
monotonic in t, we have (4.36). 

A converse result can be stated. 

Lemma 13. If A(  n, 0 a,) + A( m, 0 6) as t + cc then either 
(a)  if s 3 s,. then V 6  E D :  

lim u(dx)ln,(x) - m , ( x ) l =  0 
1-x 

or 
(b) if s < s, then (4.38) holds with 6 = 0. 

(4.38) 

Proof By (4.37) it is sufficient that A " ( n , 0 a , ) + A o ( m , 0 6 ) .  But the proof for this 
case follows simply from [6, lemma 51. 

Proof of theorem 9. Combining lemmas 10 and 11 we see that the conditions (a)  or 
(b) of lemma 12 hold (depending on whether s 2 s, or s < s,) for some sequence of 
evolutes n ,Oa, , .  Thus, by application of lemmas 12 and 13, the theorem is proved. 

5. Linearised evolution 

Global stability established, we can now make a more detailed examination of the 
return to stationarity. Again, we adapt from a treatment of stability in the free Bose 
gas [6]. We work again in L'(X, du)  and set 

% ( X I =  h,(x)+m,(x) 6, = p, - s. ( 5 . 1 )  
Then retaining terms linear in h, and 6,, equation (4.15) is approximated by 

+ ( I  + ye(CL))6h,(x)(Mw(x) - M,(x)) 
d6, ldt  = -6,. 

We now state the main theorem on linear stability. We treat only the case s < s,, i.e. 
6.0. 
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Theorem 14. The solution of (5.2) obeys 

(T, = a, exp( -A,t) 

where A,,, the relaxation constant, is 

(5.3a) 

(5.3b) 

(5.3c) 

( 5 . 3 d )  

Roo$ First consider relaxation of the condensate. From (5.1), (T, = 6, -5, v(dy)h,(y). 
Combining the equations (5.2) we find that 

dU,ldt = - , ( I +  w ( P . ) ) s ( l -  M , , ( x ) )  

whence (5.3a). 
Now consider relaxation of h, .  Consider the subspace 

and the operator 

acting in L. It is readily demonstrated that 

6 ( x )  = IlhllLl sgn(h(x))E L"(X, dv)  

is a normalised tangent functional [ 151 for h E I., and that 

( r ; , (U+X, , )h)SO.  (5.4) 
Hence, by [ 15, theorem X481, U + X,, generates a contraction semigroup on I.. Thus, 
for all h E I., 

I b P (  U , ) h  II S exp(-X,t)ll h II. ( 5 . 5 )  
Similarly, one can show that U alone generates a contraction semigroup on the whole 
of L'(X, dv).  

Next, write (5.2) as 

d 
- h , ( x ) =  Uh,+6(T,-16, (5.6a) d t  

with 

(5.66) 
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Now since 6, = So exp(-t) and U, = U, exp(-A,t) we can write 

h, = exp( t U ) h o +  d r  exp[(t - r)  U ] ( U ~  exp( -rA,)6 - So exp( - r ) l ) .  

Let 

64 1 

(5.7) 

where I)J is a normalised eigenfunction of U with eigenvalue 0. Thus (5.7) can be 
rewritten as 

h, = ~ ~ P ~ ~ ~ ~ ~ ~ o + ~ ~ o - ~ 0 ~ $ l - ~ ~ o ~ ~ P ~ - ~ f i ~ ~ - ~ O ~ ~ P ~ - ~ ~ l $  

+ l 0 ' d r  exp[(t - r )U] [~~exp( -rA, ) (6 -A,$ ) -exp( -r )S~( l -$ ) ] .  (5.8) 

Since ho+ (uo- So)$, 6 - A,$ and 1 - $ are all in L, then from (5.5) we have the bound 

IIh, II exP(-~,t)llho+ (go- So)$Il +U0 exp(-h,t)+ 60 exp(-t) 
exp( - i f i t )  - exp( -A,t) 

II 6 - +A, II A, -i, + U 0  

exp( -A,t) - exp( -t)  - + So 1 -A, ll1-*ll. (5.9) 

Since 1, < A ,  we have (5.3c), unless i, = 1, in which case the bound is of the form 
Ft exp(-t). 

By examination of (5.36) and (2.4) we see that the relaxation time for the condensate 
blows up as s approaches s, from below (i.e. as p.f,x). Thus the disordered phase 
becomes unstable at the phase transition. 
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